MYO-INOSITOL 1,4,6-TRISPHOSPHATE: A NEW SYNTHETIC Ca²⁺-MOBILISING INOSITOL PHOSPHATE

Stephen J Mills, Jenan Al-Hafidh, John Westwick and Barry V L Potter*

School of Pharmacy & Pharmacology and Institute for Life Sciences University of Bath Claverton Down, Bath BA2 7AY, UK

(Received in Belgium 19 July 1993)

Abstract: The synthesis of myo-inositol 1,4,6-trisphosphate from myo-inositol is described; this novel trisphosphate is a potent Ca^{2+} -mobilising agonist at the $Ins(1,4,5)P_3$ receptor and is derived from structure-activity considerations of myo-inositol 1,3,4,6-tetrakisphosphate.

D-myo-Inositol 1,4,5-trisphosphate Ins(1,4,5)P₃ (1) (Fig 1), released by receptor-mediated phospholipase C-catalysed cleavage of phosphatidylinositol 4,5-bisphosphate has emerged within the last decade as a second messenger linking the spatially separated events of receptor stimulation and release of intracellular calcium from internal stores^{1,2}. Ins(1,4,5)P₃ acts through an intracellular endoplasmic reticular receptor which has been isolated³, cloned and sequenced^{4,5} and reconstituted⁶; Ins(1,4,5)P₃ is metabolised via two pathways⁷: deactivation by a 5-phosphatase to Ins(1,4)P₂ or phosphorylation by a 3-kinase to the tetrakisphosphate Ins(1,3,4,5)P₄. The function of the latter still remains controversial and Ins(1,3,4,5)P₄ may gate a plasma membrane Ca²⁺ channel⁸.

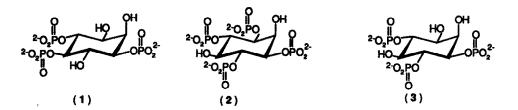
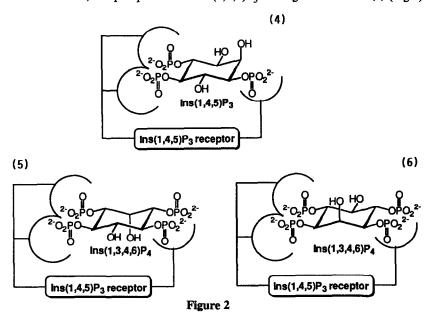



Figure 1

2600 S. J. MILLS et al.

As part of an ongoing programme aimed to study structure-activity relationships in inositol tris- and tetrakisphosphates⁹ we have been engaged in the synthesis of *myo*-inositol polyphosphates and their analogues as potential enzyme inhibitors and receptor antagonists. An important concept in the structure-activity studies performed to date^{7,9,10} on Ins(1,4,5)P₃ analogues is the key role of the vicinal 4,5-bisphosphate system in mediating intracellular Ca²⁺ release. Most interesting, therefore, were the observations^{11,12} that the naturally occurring tetrakisphosphate *myo*-inositol 1,3,4,6-tetrakisphosphate [Ins(1,3,4,6)P₄] (2), possesses Ca²⁺-mobilising activity, despite the apparent absence of a 4,5-bisphosphate motif. We have rationalised this⁹ by invoking two alternative receptor binding conformations (5) and (6) for Ins(1,3,4,6)P₄, where the 1,6-vicinal bisphosphate mimics the normal 4,5-bisphosphate in the Ins(1,4,5)P₃ binding conformation (4) (Fig 2).

Since a 1-phosphate group and an equatorial 6-OH are thought to be responsible for enhanced receptor binding^{7,13} it seems most likely that conformation (5) is the active one, especially since an axial -OH group at the 3-position as in L-chiro-Ins(2,3,5)P₃ only results on an approximate 10-fold decrease in Ca²⁺ mobilising activity¹⁴, relative to Ins(1,4,5)P₃.

Conformation (5) would predict that the novel trisphosphate $Ins(1,4,6)P_3$ (3) should show Ca^{2+} mobilising activity. We therefore undertook the preparation of this compound and we report here the synthesis of racemic (3) and demonstrate its Ca^{2+} -mobilising activity in permeabilised platelets.

Ins(1,4,6)P₃ was synthesised from *myo*-inositol according to the Scheme.* The intermediate diol (7) was prepared from *myo*-inositol in three steps according to Gigg *et al*¹⁵. This diol was alkylated with allyl bromide in DMF to give fully protected (8). The less stable *trans*-diequatorial ketal was removed using a catalytic amount of *p*-toluene sulphonic acid and 1 equivalent of ethane 1,2-diol in dichloromethane in order to expose the vicinal diol of (9). Stannylation of (9) using dibutyltin oxide and a quaternary ammonium halide¹⁶ followed by alkylation (*in situ*) with *p*-methoxybenzyl chloride gave, as a minor product, the di-*O-p*-methoxybenzyl derivative (10), (14% yield), and as major products the 5-*O-p*-methoxybenzylated derivative (11), (31% yield) and predominantly the desired 6-*O-p*-methoxybenzylated derivative (12), (52% yield), the latter of which was used to prepare the key 2,3,5-tri-*O*-benzyl triol (16). All three of these products were readily separated by flash column chromatography.

The 5-hydroxyl group of (12) was first benzylated and the *cis*-ketal of the resulting product was removed using methanol-MHCl (9:1) to expose the 2,3-*cis*-diol of (13). Benzylation of this diol on both hydroxyl groups and isomerisation of the allyl protecting groups to their *cis*-prop-1-enyl ethers using potassium *t*-butoxide in DMSO¹⁷ gave fully protected (15), which could be deprotected in one step with acid to give the required precursor (16) for phosphorylation to myo-inositol 1,4,6-trisphosphate. The triol (16) was phosphitylated with bis(benzyloxy)(diisopropylamino)phosphine¹⁸ and the resulting trisphosphate oxidised with *t*-butyl-hydroperoxide to give the syrupy, totally protected trisphosphate (17), (85% yield). A one step deprotection with sodium in liquid ammonia¹⁹, followed by purification of the crude product by ion exchange chromatography on Q-Sepharose fast flow, using a

^{*} All new compounds showed satisfactory spectroscopic properties.

Reagents and conditions

i, AllBr, NaH, DMF; ii, PTSA (cat),ethane 1,2 diol,(1.0 equiv.), CH₂Cl₂; iii,Bu₂SnO (1.0 equiv.), Bu₄NI,CH₃CN,PMBCI (2 equiv.), reflux 24hrs; iv, BnBr,NaH,DMF; v, MeOH - 1M HCl (9:1 v/v), 50°C, 45mins; vi, BnBr, NaH, DMF; vii, Bu\0K-DMSO, 50°C,4hrs; viii, EtOH - 1M HCl (2:1 v/v), reflux 3hrs; ix, (a) $(BnO)_2$ PNPr₂\0\0 6 equiv.), tetrazole (12 equiv.) in CH₂Cl₂. (b) H₂O, then Bu\0OH (80%, Fluka); x,Na-liq. NH₃. All = allyl; PMB = ρ - methoxyberizyl; Bn = benzyl; PTSA = ρ - toluenesulphonic acid; Prop. = cis-prop-1-enyl. All compounds are racemic.

gradient of triethylammonium bicarbonate as eluant, gave pure myo-inositol 1,4,6-trisphosphate (3) in 60% yield as its glassy triethylammonium salt.

Racemic (3) was evaluated as a Ca^{2+} mobilising agonist in permeabilised platelets, relative to $Ins(1,4,5)P_3$ and $Ins(1,3,4,6)P_4$. Rabbit platelets were isolated and washed according to Murphy *et al*²⁰, then permeabilised with saponin and loaded with ⁴⁵Ca²⁺. The permeabilised platelets were stimulated with $Ins(1,4,5)P_3$ and analogues for 3 min. at 4°C, then the remaining cell-associated ⁴⁵Ca²⁺ was determined by rapid filtration. The percentage ⁴⁵Ca²⁺ release induced by each compound was expressed relative to that induced by $30\mu M$ ionomycin.

The dose response curves are shown in Fig 3 and the EC₅₀ values (mean \pm SE Mean) were 0.18 \pm 0.1 μ M [Ins(1,4,5)P₃], 2.07 \pm 0.08 μ M [Ins(1,4,6)P₃] and 9.67 \pm 0.5 μ M [Ins(1,3,4,6)P₄]. Therefore Ins(1,4,6)P₃ is some 11 fold less potent than Ins(1,4,5)P₃, but five fold *more potent* than Ins(1,3,4,6)P₄ in its ability to mobilise calcium.

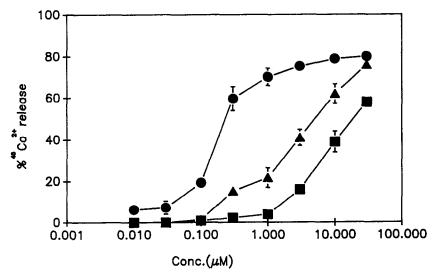


Figure 3: The dose-response curves of $Ins(1,4,5)P_3$ and its analogues for their ability to release $^{45}Ca^{2+}$ from permeabilised rabbit platelets. Each point is mean \pm δ SE; Mean of 3 determinations. $Ins(1,4,5)P_3$ (\bullet), $Ins(1,4,6)P_3$ (\bullet), $Ins(1,3,4,6)P_4$ (\blacksquare).

2604 S. J. MILLS et al.

This is consistent with our proposed model (Fig 2) and presumably only reflects activity of the D-enantiomer of Ins(1,4,6)P₃. This considerable enhancement of potency in a totally synthetic relative of the naturally occurring Ins(1,3,4,6)P₃ represents one of the first examples of rational structure-based molecular design in the inositol phosphate field.

ACKNOWLEDGEMENTS:

We thank SERC (Molecular Recognition Initiative) and The Wellcome Trust for financial support, Dr D Lampe for Fig 2, and S Alston for manuscript preparation. BVLP is a Lister Institute Fellow.

REFERENCES

- 1. Berridge, M.J. Annu. Rev. Biochem. 1987, 56, 159.
- 2. Berridge, M.J. Nature 1993, 361, 315.
- Supattapone, S.; Worley, P.F.; Baraban, J.M.; Snyder, S.H. J. Biol. Chem. 1988, 263, 1530.
- Furuichi, T.; Yoshikawa, S.; Miyawaki, A.; Wada, A; Maeda, N.; Mikoshiba, K. Nature 1989, 342, 32.
- Mignery, G.A.; Newton, C.L.; Archer III, B.T.; Südhof, T.C. J. Biol. Chem. 1990, 265, 12679.
- Ferris, C.D.; Huganir, R.L.; Supattapone, S.; Snyder, S.H. Nature 1989, 342, 87.
- 7. Nahorski, S.R.; Potter, B.V.L. Trends Pharmacol. Sci. 1989, 10, 139.
- 8. Lückhoff, A.; Clapham D.E. Nature 1992, 355, 356.
- 9. Potter, B.V.L.; Nahorski, S.R. Biochem. Soc. Trans. 1992, 20, 434.
- Polokoff, M.A.; Bencen, G.H.; Vacca, J.P.; de Solms, J.; Young, S.D.; Huff, J.R. J. Biol. Chem. 1988, 263, 11927.
- 11. Ivorra, I.; Gigg, R.; Irvine, R.F.; Parker, I. Biochem. J. 1991, 273, 317.
- 12. Gawler, D.J.; Potter, B.V.L.; Gigg, R.; Nahorski, S.R. *Biochem. J.* 1991, 276, 163.
- Safrany, S.T.; Wojcikiewicz, R.J.H.; Strupish, J.; Nahorski, S.R.; Dubreuil, D.;
 Cleophax, J.; Gero, S.D.; Potter, B.V.L. FEBS Lett. 1991, 278, 252.
- Safrany, S.T.; Wilcox, R.A.; Liu, C.; Potter, B.V.L.; Nahorski, S.R. Eur. J. Pharmacol. 1992, 226, 265.
- 15. Gigg, R.; Gigg, J.; Payne, S.; Conant, R. Carbohydr. Res. 1985, 142, 132.
- 16. David, S.; Hanessian, S. Tetrahedron 1985, 41, 643.
- 17. Price, C.C.; Snyder, W.H. J. Am. Chem. Soc. 1961, 83, 1773.
- 18. Yu, K.L.; Fraser-Reid, B. Tetrahedron Lett. 1988, 20, 979.
- 19. Cooke, A.M.; Gigg, R.; Potter, B.V.L. Tetrahedron Lett. 1987, 28, 2305.
- 20. Murphy, C.T.; Elmore, M.; Kellie, S.; Westwick, J. Biochem. J. 1991, 278, 255.